3.86 \(\int \frac {(d+e x^2) (a+b \text {csch}^{-1}(c x))}{x} \, dx\)

Optimal. Leaf size=115 \[ -d \log \left (\frac {1}{x}\right ) \left (a+b \text {csch}^{-1}(c x)\right )+\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )+\frac {b e x \sqrt {\frac {1}{c^2 x^2}+1}}{2 c}-\frac {1}{2} b d \text {Li}_2\left (e^{2 \text {csch}^{-1}(c x)}\right )+\frac {1}{2} b d \text {csch}^{-1}(c x)^2-b d \text {csch}^{-1}(c x) \log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )+b d \log \left (\frac {1}{x}\right ) \text {csch}^{-1}(c x) \]

[Out]

1/2*b*d*arccsch(c*x)^2+1/2*e*x^2*(a+b*arccsch(c*x))-b*d*arccsch(c*x)*ln(1-(1/c/x+(1+1/c^2/x^2)^(1/2))^2)+b*d*a
rccsch(c*x)*ln(1/x)-d*(a+b*arccsch(c*x))*ln(1/x)-1/2*b*d*polylog(2,(1/c/x+(1+1/c^2/x^2)^(1/2))^2)+1/2*b*e*x*(1
+1/c^2/x^2)^(1/2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.579, Rules used = {6304, 14, 5789, 6742, 264, 2325, 5659, 3716, 2190, 2279, 2391} \[ -\frac {1}{2} b d \text {PolyLog}\left (2,e^{2 \text {csch}^{-1}(c x)}\right )-d \log \left (\frac {1}{x}\right ) \left (a+b \text {csch}^{-1}(c x)\right )+\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )+\frac {b e x \sqrt {\frac {1}{c^2 x^2}+1}}{2 c}+\frac {1}{2} b d \text {csch}^{-1}(c x)^2-b d \text {csch}^{-1}(c x) \log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )+b d \log \left (\frac {1}{x}\right ) \text {csch}^{-1}(c x) \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x^2)*(a + b*ArcCsch[c*x]))/x,x]

[Out]

(b*e*Sqrt[1 + 1/(c^2*x^2)]*x)/(2*c) + (b*d*ArcCsch[c*x]^2)/2 + (e*x^2*(a + b*ArcCsch[c*x]))/2 - b*d*ArcCsch[c*
x]*Log[1 - E^(2*ArcCsch[c*x])] + b*d*ArcCsch[c*x]*Log[x^(-1)] - d*(a + b*ArcCsch[c*x])*Log[x^(-1)] - (b*d*Poly
Log[2, E^(2*ArcCsch[c*x])])/2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2325

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(ArcSinh[(Rt[e, 2]*x)/S
qrt[d]]*(a + b*Log[c*x^n]))/Rt[e, 2], x] - Dist[(b*n)/Rt[e, 2], Int[ArcSinh[(Rt[e, 2]*x)/Sqrt[d]]/x, x], x] /;
 FreeQ[{a, b, c, d, e, n}, x] && GtQ[d, 0] && PosQ[e]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3716

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c
+ d*x)^(m + 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(E^(2*I*k*Pi)*(1 + E^(2*
(-(I*e) + f*fz*x))/E^(2*I*k*Pi))), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 5659

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tanh[x], x], x, ArcSinh
[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 5789

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/Sqrt[1
 + c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[e, c^2*d] && IntegerQ[p] && (GtQ[p, 0] || (
IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))

Rule 6304

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int
[((e + d*x^2)^p*(a + b*ArcSinh[x/c])^n)/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[n, 0] && IntegersQ[m, p]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right ) \left (a+b \text {csch}^{-1}(c x)\right )}{x} \, dx &=-\operatorname {Subst}\left (\int \frac {\left (e+d x^2\right ) \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{x^3} \, dx,x,\frac {1}{x}\right )\\ &=\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )+\frac {b \operatorname {Subst}\left (\int \frac {-\frac {e}{2 x^2}+d \log (x)}{\sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{c}\\ &=\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )+\frac {b \operatorname {Subst}\left (\int \left (-\frac {e}{2 x^2 \sqrt {1+\frac {x^2}{c^2}}}+\frac {d \log (x)}{\sqrt {1+\frac {x^2}{c^2}}}\right ) \, dx,x,\frac {1}{x}\right )}{c}\\ &=\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )+\frac {(b d) \operatorname {Subst}\left (\int \frac {\log (x)}{\sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{c}-\frac {(b e) \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{2 c}\\ &=\frac {b e \sqrt {1+\frac {1}{c^2 x^2}} x}{2 c}+\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )+b d \text {csch}^{-1}(c x) \log \left (\frac {1}{x}\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )-(b d) \operatorname {Subst}\left (\int \frac {\sinh ^{-1}\left (\frac {x}{c}\right )}{x} \, dx,x,\frac {1}{x}\right )\\ &=\frac {b e \sqrt {1+\frac {1}{c^2 x^2}} x}{2 c}+\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )+b d \text {csch}^{-1}(c x) \log \left (\frac {1}{x}\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )-(b d) \operatorname {Subst}\left (\int x \coth (x) \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=\frac {b e \sqrt {1+\frac {1}{c^2 x^2}} x}{2 c}+\frac {1}{2} b d \text {csch}^{-1}(c x)^2+\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )+b d \text {csch}^{-1}(c x) \log \left (\frac {1}{x}\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )+(2 b d) \operatorname {Subst}\left (\int \frac {e^{2 x} x}{1-e^{2 x}} \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=\frac {b e \sqrt {1+\frac {1}{c^2 x^2}} x}{2 c}+\frac {1}{2} b d \text {csch}^{-1}(c x)^2+\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )-b d \text {csch}^{-1}(c x) \log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )+b d \text {csch}^{-1}(c x) \log \left (\frac {1}{x}\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )+(b d) \operatorname {Subst}\left (\int \log \left (1-e^{2 x}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=\frac {b e \sqrt {1+\frac {1}{c^2 x^2}} x}{2 c}+\frac {1}{2} b d \text {csch}^{-1}(c x)^2+\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )-b d \text {csch}^{-1}(c x) \log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )+b d \text {csch}^{-1}(c x) \log \left (\frac {1}{x}\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )+\frac {1}{2} (b d) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 \text {csch}^{-1}(c x)}\right )\\ &=\frac {b e \sqrt {1+\frac {1}{c^2 x^2}} x}{2 c}+\frac {1}{2} b d \text {csch}^{-1}(c x)^2+\frac {1}{2} e x^2 \left (a+b \text {csch}^{-1}(c x)\right )-b d \text {csch}^{-1}(c x) \log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )+b d \text {csch}^{-1}(c x) \log \left (\frac {1}{x}\right )-d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {1}{x}\right )-\frac {1}{2} b d \text {Li}_2\left (e^{2 \text {csch}^{-1}(c x)}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 93, normalized size = 0.81 \[ \frac {2 a c d \log (x)+a c e x^2+b e x \sqrt {\frac {1}{c^2 x^2}+1}+b c \text {csch}^{-1}(c x) \left (e x^2-2 d \log \left (1-e^{-2 \text {csch}^{-1}(c x)}\right )\right )+b c d \text {Li}_2\left (e^{-2 \text {csch}^{-1}(c x)}\right )-b c d \text {csch}^{-1}(c x)^2}{2 c} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d + e*x^2)*(a + b*ArcCsch[c*x]))/x,x]

[Out]

(b*e*Sqrt[1 + 1/(c^2*x^2)]*x + a*c*e*x^2 - b*c*d*ArcCsch[c*x]^2 + b*c*ArcCsch[c*x]*(e*x^2 - 2*d*Log[1 - E^(-2*
ArcCsch[c*x])]) + 2*a*c*d*Log[x] + b*c*d*PolyLog[2, E^(-2*ArcCsch[c*x])])/(2*c)

________________________________________________________________________________________

fricas [F]  time = 0.95, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a e x^{2} + a d + {\left (b e x^{2} + b d\right )} \operatorname {arcsch}\left (c x\right )}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arccsch(c*x))/x,x, algorithm="fricas")

[Out]

integral((a*e*x^2 + a*d + (b*e*x^2 + b*d)*arccsch(c*x))/x, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )} {\left (b \operatorname {arcsch}\left (c x\right ) + a\right )}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arccsch(c*x))/x,x, algorithm="giac")

[Out]

integrate((e*x^2 + d)*(b*arccsch(c*x) + a)/x, x)

________________________________________________________________________________________

maple [F]  time = 0.11, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \,x^{2}+d \right ) \left (a +b \,\mathrm {arccsch}\left (c x \right )\right )}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)*(a+b*arccsch(c*x))/x,x)

[Out]

int((e*x^2+d)*(a+b*arccsch(c*x))/x,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ 2 \, b c^{2} d \int \frac {x \log \relax (x)}{2 \, {\left (\sqrt {c^{2} x^{2} + 1} c^{2} x^{2} + c^{2} x^{2} + \sqrt {c^{2} x^{2} + 1} + 1\right )}}\,{d x} - \frac {1}{2} \, b e x^{2} \log \relax (c) - \frac {1}{2} \, b e x^{2} \log \relax (x) + \frac {1}{2} \, a e x^{2} - b d \log \relax (c) \log \relax (x) - \frac {1}{2} \, b d \log \relax (x)^{2} - \frac {1}{4} \, {\left (2 \, \log \left (c^{2} x^{2} + 1\right ) \log \relax (x) + {\rm Li}_2\left (-c^{2} x^{2}\right )\right )} b d + a d \log \relax (x) + \frac {1}{2} \, {\left (b e x^{2} + 2 \, b d \log \relax (x)\right )} \log \left (\sqrt {c^{2} x^{2} + 1} + 1\right ) + \frac {b e {\left (2 \, \sqrt {c^{2} x^{2} + 1} - \log \left (c^{2} x^{2} + 1\right )\right )}}{4 \, c^{2}} + \frac {b e \log \left (c^{2} x^{2} + 1\right )}{4 \, c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arccsch(c*x))/x,x, algorithm="maxima")

[Out]

2*b*c^2*d*integrate(1/2*x*log(x)/(sqrt(c^2*x^2 + 1)*c^2*x^2 + c^2*x^2 + sqrt(c^2*x^2 + 1) + 1), x) - 1/2*b*e*x
^2*log(c) - 1/2*b*e*x^2*log(x) + 1/2*a*e*x^2 - b*d*log(c)*log(x) - 1/2*b*d*log(x)^2 - 1/4*(2*log(c^2*x^2 + 1)*
log(x) + dilog(-c^2*x^2))*b*d + a*d*log(x) + 1/2*(b*e*x^2 + 2*b*d*log(x))*log(sqrt(c^2*x^2 + 1) + 1) + 1/4*b*e
*(2*sqrt(c^2*x^2 + 1) - log(c^2*x^2 + 1))/c^2 + 1/4*b*e*log(c^2*x^2 + 1)/c^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (e\,x^2+d\right )\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x^2)*(a + b*asinh(1/(c*x))))/x,x)

[Out]

int(((d + e*x^2)*(a + b*asinh(1/(c*x))))/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {acsch}{\left (c x \right )}\right ) \left (d + e x^{2}\right )}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)*(a+b*acsch(c*x))/x,x)

[Out]

Integral((a + b*acsch(c*x))*(d + e*x**2)/x, x)

________________________________________________________________________________________